
Who are Vulnerability Reporters? A Large-scale Empirical Study
on FLOSS

Nikolaos Alexopoulos
alexopoulos@tk.tu-darmstadt.de
Technical University of Darmstadt

Germany

Andrew Meneely
andy@se.rit.edu

Rochester Institute of Technology
USA

Dorian Arnouts
dorian-benedikt.arnouts@stud.tu-darmstadt.de

Technical University of Darmstadt
Germany

Max Mühlhäuser
max@informatik.tu-darmstadt.de
Technical University of Darmstadt

Germany

ABSTRACT
(Background) Software vulnerabilities pose a serious threat to the
security of computer systems. Hence, there is a constant race for
defenders to find and patch them before attackers are able to exploit
them. Measuring different aspects of this process is important in
order to better understand it and improve the odds for defenders.
(Aims) The human factor of the vulnerability discovery and patch-
ing process has received limited attention. Better knowledge of the
characteristics of the people and organizations who discover and
report security vulnerabilities can considerably enhance our under-
standing of the process, provide insights regarding the expended
effort in vulnerability hunting, contribute to better security metrics,
and help guide practical decisions regarding the strategy of projects
to attract vulnerability researchers.
(Method) In this paper, we present what is, to the best of our knowl-
edge, the first large-scale empirical study on the people and or-
ganizations who report vulnerabilities in popular FLOSS projects.
Collecting data from a multitude of publicly available sources (NVD,
bug-tracking platforms, vendor advisories, source code reposito-
ries), we create a dataset of reporter information for 2193 unique
reporting entities of 4756 CVEs affecting the Mozilla suite, Apache
httpd, the PHP interpreter, and the Linux kernel. We use the dataset
to investigate several aspects of the vulnerability discovery pro-
cess, specifically regarding the distribution of contributions, their
temporal characteristics, and the motivations of reporters.
(Results) Among our results: around 80% of reports come from 20%
of reporters; first time reporters are significant contributors to the
yearly total in all 4 projects; productive reporters are specialized
w.r.t. the project and vulnerability types; around half of all reports
come from reporters acknowledging an affiliation.
(Conclusions) Projects depend both on a core of dedicated and pro-
ductive reporters, and on small contributions from a large num-
ber of community reporters. The generalized Pareto principle (the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEM ’21, October 11–15, 2021, Bari, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8665-4/21/10. . . $15.00
https://doi.org/10.1145/3475716.3475783

(1 − p)/p law) can be used as a metric for the concentration of
contributions in the vulnerability-reporting ecosystem of a project.

CCS CONCEPTS
• Security and privacy → Software and application security;
• General and reference→ Metrics; Empirical studies.

KEYWORDS
vulnerability reporters, empirical study, security metrics

1 INTRODUCTION
Vulnerabilities or security bugs are a unique breed of bug. Rather
than a deficiency in functionality, a vulnerability is an unintended
feature that can potentially enable attackers to compromise the
system. Discovering a vulnerability involves consideration not just
of what the system was intended to do, but what is possible to
exploit.

This attacker mindset is not ingrained in every developer, so
Free/Libre and Open Source Software (FLOSS) projects must rely
on the diverse skillsets of their community to both discover and
responsibly disclose these vulnerabilities. Currently, report rates
of vulnerabilities are at an all-time high, according to the National
Vulnerability Database (NVD) [8], as well as seeing an increase in
the diversity of types of vulnerabilities being reported [24]. The
most prominent FLOSS projects today, such as those in this study,
have had steady a stream of actionable vulnerability reports for
well over a decade.

Furthermore, unlike a typical bug, knowledge of a vulnerabil-
ity may have value for nefarious purposes, such as black-market
sales or exploitation. There is motivation to keep vulnerabilities
undisclosed.

The unique characteristics of the vulnerability discovery and
patching process, coupled with the impact of exploits, have moti-
vated the community to measure different aspects of the process,
in order to better understand and improve it. For example, work
on Vulnerability Discovery Models (VDMs) [2, 4, 15, 16] focuses on
modeling and predicting the discovery rate of vulnerabilities after
the release of a software product. Other studies look into general
characteristics of vulnerabilities [1, 26], such as their severity and
types, while a considerable amount of work focuses on character-
istics of the patching process [11, 17, 23], and the effectiveness of
bug bounty programs [10, 14, 19]. Despite the great efforts of the

https://doi.org/10.1145/3475716.3475783

ESEM ’21, October 11–15, 2021, Bari, Italy Nikolaos Alexopoulos, Andrew Meneely, Dorian Arnouts, and Max Mühlhäuser

community in investigating different aspects of the process, the
“who”s of the process have not yet received enough attention, es-
pecially outside the closed environment of bug bounty programs.
In this paper, we empirically investigate vulnerability reporters1,
trying to answer questions such as the following:

Who is reporting vulnerabilities to FLOSS projects? Are all re-
porters equally productive? Do more reports mean more reporters?
How often are bug bounty programs involved? Are reporters spe-
cialized?

Answers to such questions will increase our understanding of the
process, and can have important practical implications on security
metrics and practices. FLOSS project coordinators need to know
their community of vulnerability reporters if they want to maintain
the health of the project long-term (since this depends on keeping
them involved). FLOSS maintainers, as well, need to understand
who they will be working with in the disclosure and fixing process.
Regarding security metrics, the amount of effort expended in vul-
nerability finding is known to significantly influence the number of
discoveries, and thus researchers have tried to quantify it. For ex-
ample, effort-based VDMs [3, 29] assess the amount of this effort by
the size of the installed user base of an application, or, integrating
over time, by the amount of user hours/days since the release of an
application. Although such approximations may be well suited for
regular bugs, they are not directly related to the effort expended in
the vulnerability discovery process, due to the unique nature of the
latter (users will generally not bump into a vulnerability when us-
ing their favorite browser to browse the Internet). Investigating the
landscape of vulnerability reporters can provide insights leading to
better metrics of vulnerability-hunting effort with applications to
VDMs and other measurement methodologies.

Overall, the goal of this study is to shed light on the human aspect
of the vulnerability discovery process by analyzing historical vulner-
ability reporting data of mature and successful open source projects,
in order to: (a) identify common trends and practices that can act as
benchmarks of community engagement for new and existing projects,
and (b) examine whether (and to what extent) empirical metrics of
community engagement can act as indicators of software quality (w.r.t
security).

We approach the problem by performing a large-scale empiri-
cal study on four big community-driven open-source projects: the
Linux kernel, the Apache HTTP Server Project, the Mozilla suite
(including Firefox and Thunderbird), and the PHP interpreter. We
chose these projects as they are popular community-driven open-
source projects with a large number of reported vulnerabilities and
a transparent process for reporting and fixing them. We introduce
a methodology to collect information regarding vulnerability re-
porters from a variety of sources, including the NVD, the projects’
bug reporting platforms, and the projects’ version control systems.
We make the data collection and analysis scripts available under a
free software license2. We also publish a snapshot of the dataset3.

1Although there is a slight difference between vulnerability reporters and discoverers
(we discuss this in Section 6), for the rest of the paper, we assume the terms reporters
and discoverers to be interchangeable.
2https://github.com/nikalexo/vulnerability_reporters
3https://doi.org/10.6084/m9.figshare.14986830.v1 . Data are collected from publicly
available sources whose purpose is to credit vulnerability reporters. Thus, the data
were manifestly made public, and as such processing of the data does not infringe on
the privacy rights of the involved individuals, e.g. see Article 9 of the GDPR.

Analysis focus: The dataset created by our methodology can be
used to investigate a wide range of characteristics of the vulner-
ability discovery process. However, to obtain insights relevant to
our above-stated goal, we structure our investigation focusing on
the following areas of interest:

Distribution and temporal characteristics.We investigate whether
contributions to the vulnerability discovery process (reported vul-
nerabilities) are evenly distributed among the contributing entities
(decentralized) or significantly concentrated in a small number
of reporters (centralized). This investigation can provide insights
as to whether "many eyeballs" (a reference to Linus’s law) is the
primary contributing factor behind vulnerability discoveries, or
if the proliferation of automated tools during the last decade has
reduced the need for a large community of bug reporters, and thus
made dedicated security resources (translating to a large number of
vulnerabilities reported by a small number of entities) the primary
contributing factor.

Another issue we investigate is whether productive reporters are
specialized in specific types of vulnerabilities. Apart from reporter
specialization, we also investigate temporal characteristics of the
dataset. Do more CVEs mean more reporters over time? For how
long do reporters stay engaged?

MotivationsWeexplore themotivations of reporters in the projects
of our study. Does a large portion of yearly reports come from re-
porters that have otherwise (e.g. via code commits or non-security
bug reports) contributed to the project? Are most reports coming
from reporters internal to the organization behind the project? Are
they employed by other organizations? Did they receive bounties?
Answers to these questions can provide insights into how estab-
lished open source projects attract vulnerability reporters, which in
turn can be translated to strategies for new and emerging projects.
Summary of results:We found that the distribution of reporter
contributions can be described by a power law, meaning there are
a few reporters responsible for most reports, while most reporters
report only a few vulnerabilities. The number of reports is correlated
with the number of reporters over time, while first time reporters
account for a significant portion of the reports on a yearly basis.
Regarding the period of engagement, for Mozilla, top reporters
stay involved for a median of more than 8 years, significantly more
compared to the other 3 projects. Also, reporters are specialized
w.r.t. the type of vulnerability. Regarding motivations, bug bounty
programs contribute significantly, yet bounty-related reports are
a minority in all projects. Furthermore, a minority of reporters
are affiliated to the organization behind the projects, while 35% of
reporters have also committed to the project’s repository, and 39%
of reporters created a non-CVE bug in the project’s bug tracking
platform.
Key takeaways: Reports come from two groups of reporting enti-
ties. “Dedicated” entities that report a relatively large amount of
CVEs, and a large number of other entities that report only a few
CVEs. We interpret this result as a showcase of the complimentary
nature of contributions resulting from (a) dedicated security plan-
ning and testing, and (b) the “many eyeballs” of the open source
community. Furthermore, since we see first time reports contribute
significantly to the yearly total of reports for a project, and reporters
tend to stay involved for a relatively short period of time (except for

https://github.com/nikalexo/vulnerability_reporters
https://doi.org/10.6084/m9.figshare.14986830.v1

Who are Vulnerability Reporters? A Large-scale Empirical Study on FLOSS ESEM ’21, October 11–15, 2021, Bari, Italy

Mozilla), not only do projects need to establish an active commu-
nity of vulnerability reporters, they also need to make sure that the
project remains attractive to new vulnerability reporters over time.
Finally, although it is inherently difficult to come up with quan-
titative metrics of the effectiveness of the vulnerability-hunting
community of a project, we identify one such metric that can be
of value. Since the distribution of reports per reporter can be de-
scribed by a power law for the projects in our study, the generalized
Pareto principle (the (1−p)/p rule) can be used as a measure of the
balance between dedicated resources and community engagement.
We further discuss the implications of our results in Section 5.

2 RELATEDWORK
There is a large number of previous works describingmeasurements
relevant to the bug- and vulnerability-hunting process (e.g. [17,
20, 27]). However, in this section we focus on related work on
vulnerability reporters.
User studies on discoverers. The most closely related work on
vulnerability discoverers is based on conducting user studies. The
work of Fang and Hafiz [9, 12] is especially relevant to ours. They
ran an email-questionnaire user study collecting 127 responses
from a variety of reporters of buffer overflow, SQL injection, and
cross-site scripting vulnerabilities. Their study was the first to tar-
get reporters of vulnerabilities. They focused on the approach, tools
and techniques of reporters of different types of vulnerabilities
affecting a variety of software, as well as their disclosure practices.
One of the results of their user study that our analysis corrobo-
rates is that reporters seem to be specialized w.r.t. the types of
vulnerabilities they report. In their used study, a large proportion
of the reporters who responded to the questionnaire, claimed to
have reported a large number of vulnerabilities. Our data, on the
other hand, indicates that most reporters report a small number of
vulnerabilities. This is probably due to the inherent bias induced
by the user study (it might be easier to contact a reporter with
multiple reports, such a reporter may be more likely to respond
to a request, etc.). Our approach of having a largely automated
process, using publicly available data from a variety of sources,
and striving for completeness of information, allows us to work on
a much larger scale and investigate questions that are difficult to
investigate otherwise (e.g. regarding differences between projects).

Another interesting user study was performed by Votipka et
al. [28]. They used a semi-structured interview technique on a
sample of 25 testers (fromwithin a project) and white-hat hackers to
investigate differences in the vulnerability-finding processes of the
two groups. They concluded that the approaches of the two groups
differ significantly and a project would benefit from the engagement
of both groups in its community. They also pointed out that hacker
engagement can also be achieved via non-financial rewards along
with bug bounties. Our analysis confirms these results, as we see a
strong contribution from both long-term reporters and “come-and-
go” hackers, with bug bounties not necessarily being the incentive.
Bug bounty programs. Most previous large-scale studies provid-
ing insights into vulnerability hunting do so fromwithin the bounds
of bug bounty programs [10, 14, 19, 22, 30]. Although we show that
bug bounty programs are a major contributor to some projects, their
effect in the FLOSS ecosystem as a whole seems to be rather limited.

Furthermore, none of these studies focused on the specific reporters,
more on the structure of the bounty programs themselves.
Investigating Linus’ law. Linus’ law is the proposition that a
large community of contributors and testers improves the quality
of open source software. Eric Raymond first formulated the law
as “Given enough eyeballs, all bugs are shallow” [25]. Meneely
and Williams [20, 21] explored the correlation of developer collab-
oration metrics and discovered vulnerabilities for popular open
source projects. They found that files co-developed by 2 or more
independent developer groups were more likely to contain a vul-
nerability than files developed by collaborating contributors. Also,
Linux kernel files with changes from 9 or more developers were 16
times more likely to have a vulnerability. These studies investigated
the “developer” aspect of Linus’ law. Our study, on the other hand,
provides insights regarding the “vulnerability-reporters” aspect of
the law.

3 METHODOLOGY
The following sections describe our methodology for constructing
what is, to the best of our knowledge, the largest and most complete
dataset of vulnerability reporters in existence. To do this, we had to
overcome challenges related to collecting and correctly managing
data from a large number of disparate sources (e.g. aliases, repeti-
tions, errors). It should be noted that the methodology is encoded in
scripts that automate the process (as it will become clearer below).
As a result, although we focus on four specific projects, data can be
generated for other projects with relatively little additional effort.
We also note that the process is best-effort and may still be subject
to errors, but the dataset, as well as all our scripts are open and
publicly available. We consider the methodology for constructing
the dataset of general importance, and as such, an independent
contribution.

3.1 Projects in this study
Different software projects/development teams use diverse ap-
proaches regarding reporting, patching and documenting bugs.
Their processes differ slightly in the way they handle vulnerabili-
ties.
– Mozilla suite: The Mozilla suite includes the code for Mozilla
products such as the popular Firefox web browser and Thunderbird
email client. The suite is handled as a whole since these products
share a significant underlying codebase (the Core component). Both
security and non-security-related bugs are typically reported and
handled in the Mozilla Bug Tracking System which is implemented
as a Bugzilla instance (although security bugs can also be sent to
the security team via email). Commit messages in the repository
that fix a bug should include the bug id (identification number).
The Mozilla security community also publishes security advisories
providing more information on the fixed security bugs4.
– Apache httpd: Apache httpd is a popular web server with a
market share of over 33%5. The Apache security policy6 states that
security bugs are to be reported in a dedicated private mailing list

4https://www.mozilla.org/en-US/security/advisories/
5https://w3techs.com/technologies/details/ws-apache. Market share: 33.6% on 14th
May 2021.
6http://www.apache.org/security/

https://www.mozilla.org/en-US/security/advisories/
https://w3techs.com/technologies/details/ws-apache
http://www.apache.org/security/

ESEM ’21, October 11–15, 2021, Bari, Italy Nikolaos Alexopoulos, Andrew Meneely, Dorian Arnouts, and Max Mühlhäuser

and are handled differently than normal bugs (which are handled
via a Bugzilla bug tracking system). The Apache security team also
publishes security advisories for all fixed vulnerabilities affecting
released versions.
– PHP: PHP is the most popular server-side programming language
in the web at the time of writing7. The standard PHP interpreter is
a community-driven project written almost entirely in C using git
as the version control system. Security and non-security bugs are
both handled by the PHP bug-tracking system (albeit in different
ways and with different priorities and privacy rules). Developers are
requested to add the bug number prepended by a # in the commit
message of the fix.
– Linux:The Linux kernel is arguably themost impactful community-
driven project in history, thus being the prototypical example of
Eric Raymond’s bazaar [25] model of community-driven software
development. Although most contributors to the project are no
longer volunteers (since they are employed by several organiza-
tions to work on the kernel), the general concept of the bazaar, i.e.
decentralized and lightly coupled development, still generally holds.
Security bugs in Linux are to be reported to the kernel security
team via email and are handled separately from normal bugs which
are handled via a combination of (subsystem-specific and general)
mailing lists and a Bugzilla instance.

3.2 Data sources
Pursuing the goals of the study requires the collection of several
data points for the four FLOSS projects investigated. We move on
to document the data collection process for each data type:

– CVE entries: We use the cve-search tool 8 to maintain a local
copy of the CVE information available at the NVD.

– Vulnerability reporters: Information on who first reported a
vulnerability is not available in the NVD entries. Upon further in-
vestigation, we located the following sources of information about
reporters. For Mozilla products, relevant information is available
(a) at the "Reporter" field of Mozilla Security Advisories9, (b) at
the "Reporter" field of the associated bug report. For Apache httpd,
relevant information is available at the "Acknowledgements" field
of the Apache httpd security advisories10. For PHP, relevant in-
formation is available at the "Reporter" field of the associated bug
report. For the Linux kernel, relevant information is available (a)
in the description of Debian Security Advisories11 (for vulnerabili-
ties that affected the kernel version included in the stable Debian
distribution at that point in time), (b) at the "Credit" field of the
SecurityFocus database12, as well as in Ubuntu Security Notices
and the Red Hat Linux bug tracking system. The four latter sources
of information maintain such references in general for all projects,
and are therefore considered for all of them. Although the informa-
tion of the sources above is not included in the NVD, references to
these sources are often included, making the mining process easier.

7https://w3techs.com/technologies/details/pl-php. Market share: 79.2% on 14th May
2021.
8https://github.com/cve-search/cve-search
9See Footnote 4
10https://httpd.apache.org/security_report.html
11https://www.debian.org/security/
12https://www.securityfocus.com/

– Bug reports: We mined all bug reports from the projects’ bug
tracking systems (BTSs). Mozilla, Apache, and the Linux kernel use
a Bugzilla BTS, and therefore we used the provided rest API, while
PHP uses a custom BTS, so we scraped its html pages. In all cases,
since the amount of data is large (several GB), bulk http requests
will time out, and therefore we used per-month requests.

– Developer data: To obtain data regarding the developers in-
volved in the respective projects, we cloned the github mirrors of
the projects’ repositories.

– Social network data: To enhance our dataset w.r.t. the affiliation
of reporters, we extracted relevant information from the public
profiles of reporters in the LinkedIn professional networking site.
More about the approach can be found in the following section.

– Bug bounty data: We mined the publicly visible portion of the
Hackerone13 bug bounty platform. The relevant bounty programs
for the chosen projects within Hackerone are the Apache httpd
(IBB)14, the PHP (IBB)15 (indefinitely suspended since October 2020),
and The Internet16 programs (all within the scope of the Internet
Bug Bounty (IBB) program). We found bounty information about a
total of 161 CVEs in our dataset (4 for Linux, 142 for PHP and 15
for Apache), including reporter information for 1 Linux CVE and
35 PHP CVEs, for which no reporters had been retrieved from the
other sources.

All data were collected from publicly available sources and the
collection scripts as an open source project, ensuring reproducibility
of our results. A graphical representation summarizing the data

Project CVEs PA DSA USN RH sf BTS Total
Mozilla 2 195 992 218 369 1 040 1 421 209 2 193
Apache 249 71 27 38 12 177 — 197
PHP 638 — 37 31 18 393 198 603
Linux 2 566 201 533 562 473 1 555 — 1962

Table 1: Breakdown of information sources. PA stands for
project-specific advisories, DSA for Debian Security Advi-
sories, USN for Ubuntu Security Notices, RH for the Red
Hat Linux BTS, sf for Symantec’s securityfocus.com, BTS for
the project’s bug tracking system. The last column is the to-
tal unique CVEs that we could obtain any information for
(union of all sources).

points collected and the links between them is provided in Figure 6
of Appendix A. A summary of the number of data points collected
can be found in Table 1 (due to space reasons and its relatively small
impact, the numbers from Hackerone are omitted from the table
and are available in the corresponding paragraph above).

3.3 Data cleaning and pre-processing
Data cleaning was a laborious process requiring considerable man-
ual work. We strove to make this manual effort a one-time job
by encoding the logic of the process into reusable and extendable
scripts.

13https://www.hackerone.com/
14https://hackerone.com/ibb-apache?type=team
15https://hackerone.com/ibb-php?type=team
16https://hackerone.com/internet?type=team

https://w3techs.com/technologies/details/pl-php
https://github.com/cve-search/cve-search
https://httpd.apache.org/security_report.html
https://www.debian.org/security/
https://www.securityfocus.com/
https://www.hackerone.com/
https://hackerone.com/ibb-apache?type=team
https://hackerone.com/ibb-php?type=team
https://hackerone.com/internet?type=team

Who are Vulnerability Reporters? A Large-scale Empirical Study on FLOSS ESEM ’21, October 11–15, 2021, Bari, Italy

3.3.1 CVEs affecting projects. We found out that attributing CVEs
to the affected projects (code-bases) is not a trivial task. Although
the NVD provides information following the Common Platform
Enumeration (CPE) Dictionary, some cleaning was necessary (due
to errors in the NVD). First, we filtered CVEs by the CPE identifier
for each of the projects. For Mozilla and Apache, some CVEs re-
ported in the vendors’ security advisories were missing from the
resulting set, and were subsequently added. For the Linux kernel,
there were several issues that were resolved:
–We noticed that the set of CVEs returned when searching with the
CPE of the kernel (linux:linux_kernel) is missing some CVEs.
On the other hand, a free text search with the keyword “Linux
kernel” in CVE summaries returns quite some noise (CVEs that
do not correspond to the kernel but mention it). To overcome this
issue, we only added CVEs returned by the keyword search that
included a reference to the git repository of the kernel. This yielded
a total of 6 additional CVEs, e.g. CVE-2007-6712 that includes a CPE
for kernel:linux_kernel (probably a mistake). The low number
of additional CVEs indicates that the effect of this type of NVD
errors in previous studies would be very limited.
– We noticed that some NVD entries utilizing the AND logical op-
erator to specify vulnerable configurations erroneously labeled the
operating system part of the description as vulnerable. For example,
CVE-2015-0312 describes an Adobe Flash Player vulnerability that
affects certain versions of the Player running on Linux (and other
versions of the Player running on Windows). This is not a kernel
bug, yet the json feed of the NVD wrongly labels the CPE of the
operating system as “vulnerable”. We filtered out 35 such instances
by keeping only CVEs that refer to a kernel git repository when
both another application and the kernel are included in the list of
affected CPEs.

3.3.2 Reporter information. Cleaning reporter data was a multi-
step process, consisting of the following:
(i.) Extracting reporter names via regular expressions, such as
.*(?= discovered an issue) for each source (different regu-
lar expressions may be needed for each source). At the end of this
step, we have a list of strings [s1, ... ,sn], where n is the number of
reporter sources (in our case the 6 sources of Table 1). E.g. sourcei :
Alice and Bob discovered an issue in the Linux kernel...
→ si = Alice and Bob.
(ii.) Splitting each of the strings to pieces at the ‘and’ and ‘,’
predicates. E.g. Alice and Bob→ [Alice, Bob].
(iii.) Keeping track of affiliations in a “smart” way using regular
expressions. If an affiliation follows after several names (identi-
fiers), then the affiliation corresponds to all of the preceding names.
E.g. Alice and Bob from Mozilla → aff.(Alice) = aff.(Bob) =
Mozilla.
(iv.) Keeping track of email addresses and twitter handles using
regular expressions. We keep a list of all emails associated with
a reporter as aliases for the same entity, since people are known
to use various email addresses when filing reports or committing
code [5].
(v.) Collecting reporters from all sources into a list, and removing
remaining natural language phrases (that slipped through the initial
matching of step (i.)), like found by.... Then, removing duplicates,
after first stripping the strings of leading and trailing whitespaces

and special characters like full stops. At this point we have a list of
reporters for each CVE.
(vi.)Removing “reporters”matching generic terms (e.g. the vendor,
unknown) when other reporters (not matching these terms) exist
for the same CVE.
(vii.) Merging reporters with the same email address or twitter
handle. E.g. [Alice <alice@alice.com>, alice@alice.com].
(viii.)Merging “similar” reporter names, based on their Levenshtein
distance, using the FuzzyWuzzy python library17. E.g. [Michael
Jordan, Michael Jordon]18. We merge entries over 4 characters
that are 90% or more similar (based on the similarity ratio metric of
FuzzyWuzzy). Manual inspection of all matches produced by this
(rather conservative) rule revealed no false positives (according to
our best judgment).
(ix.) Manual fixes (This is the only step with no automation
scripts). E.g. reporter names like Bug report XYZ were deleted.
Note that manual post-processing is most likely necessary in the
general case because reporter nicknames and entries like the one
above may be hard to tell apart automatically.
(x.)Mining additional affiliation information. To enhance our dataset
w.r.t. the affiliation of reporters and to capture temporal changes
in this field, we use information from LinkedIn. Since this step of
the process involves significant manual effort to clean and validate
the discovered profiles, we narrowed the scope to the top 100 re-
porters (with most reports) in our dataset. As these top reporters
contribute significantly to the total number of reports, we judged
this to be a reasonable trade-off between improving our dataset
and manual effort. Attempts to fully automate the process and
mine information for all reporters resulted in non-negligible noise
in the returned data. For each reporter in the top 100 (reporting
entities that we had not characterized as teams or organizations),
we used the “people search” function provided in LinkedIn’s inter-
face, searching for each person’s name followed by the key-phrase
computer security. We then cleaned the returned results by only
considering individuals working in related fields (e.g. Computer
& Network Security, Computer Software, Internet) and filtering
out profiles that advertise Physical Security as a skill. This brought
the number of available profiles to 48. We further investigated the
accuracy of the mappings by manually searching for characteris-
tics that point to a security researcher, e.g. phrases like “developed
fuzzing tools” or descriptions like “Ethical hacker”. Additionally,
we cross-referenced information from the profiles with information
that we already possessed in our dataset regarding the affiliation
of reporters, as well as information from associated presentations,
blog posts, etc. that were harnessed via web searches. The result
was that 40 out of the 48 profiles were classified as correct, while 8
of them as incorrect. For 7 out of the 8 incorrect cases, we were able
to manually identify the correct profile, while for the remaining
case we could not. At the end, we had manually verified profiles for
47 reporters that were within the top 100 most productive reporters
of our dataset.

The cut-off point for the data presented in this study is the 13th of
January 2021. At the end of the cleaning process, we ended up with

17https://github.com/seatgeek/fuzzywuzzy
18The correct spelling is the second. Look closely at https://www.mozilla.org/en-
US/security/advisories/mfsa2011-41/ to see the typo.

https://github.com/seatgeek/fuzzywuzzy
https://www.mozilla.org/en-US/security/advisories/mfsa2011-41/
https://www.mozilla.org/en-US/security/advisories/mfsa2011-41/

ESEM ’21, October 11–15, 2021, Bari, Italy Nikolaos Alexopoulos, Andrew Meneely, Dorian Arnouts, and Max Mühlhäuser

2 193 unique reporting entities (2 060 human reporters with the
rest being “organizations” or “teams”) associated with 4 756 CVEs.
Considering that the total number of CVEs for the four projects is
5 648, our dataset has at least one reporter for ∼ 84% of all CVEs, a
figure that surpassed our initial expectations. A breakdown of the
final dataset per project is provided in Table 2.

Project CVEs w/ reporter(s) coverage
Mozilla suite 2 195 2 085 95 %
Apache httpd 249 196 79 %

PHP 638 520 81 %
Linux (kernel) 2 566 1 955 76 %

Table 2: Breakdown of reporter coverage

4 RESULTS
In the following sections, we present the analysis of the dataset that
we constructed. We set off by investigating several characteristics
of the distribution of reporters, both statically and over time. We
then proceed to investigate indicators of reporter motivations. As
stated earlier, the goal of the analysis is (a) to identify patterns and
characteristics that can be used as a benchmark for the health and
extent of the vulnerability hunting communities of open source
projects, and (b) to provide indications on whether individual com-
munity engagement metrics can be used as indicators of health.
We use raw numbers (tables), suitable plots and empirical domain-
specific reasoning to assess the strength of relationships in our
data. Furthermore, we use suitable statistical tests with a typical 5%
significance level to assess the statistical significance of our results,
when required.

4.1 Distributions and temporal characteristics
(Concentration of reports.) We begin our analysis by investigating
the distribution of the total number of reports per each reporting
entity. With this investigation we explore whether the vulnerability
reporting ecosystem is more centralized (suggesting more dedi-
cated resource allocation) or decentralized (suggesting more com-
munity engagement) for the projects under study. Figure 1 shows

0 500 1000 1500 2000
0

50

100

150

re

po
rts

100 101 102 103
100

101

102

Figure 1: Distribution of reports per reporter in linear and
double logarithmic scales (x axis: reporters ordered by num-
ber of reports).

the distribution of reports per reporter for all projects. Observing
an almost straight line in double logarithmic axes in the second

plot of Figure 1, which is an indication of a possible power-law
distribution, we moved on to investigate statistically. Power laws
are heavy-tailed distributions, indicative of preferential attachment
behavior, which have received interest in several fields, including
software engineering [18]. We followed the seminal methodology
for fitting heavy-tailed distributions of Clauset et al. [7] and used
the Kolmogorov-Smirnov statistic to compare possible alternative
distributions. Considering a 95% confidence interval, we found that
a truncated power law (power law with exponential cut-off) is the
most likely statistical fit when considering all the projects together
and when considering Mozilla CVEs, while a pure power-law is a
good fit for the other projects (Linux, PHP and Apache) when con-
sidered individually. Detailed plots of the fits provided by candidate
distributions can be found in Figure 7 in the Appendix.

The “80/20 rule” or the Pareto principle, where 80% of the con-
tributions (e.g. wealth, bugs, CVEs) are attributed to 20% of the
population is often used as an example to portray the behavior
of a power law distribution. However, power laws can be more
balanced or imbalanced. The generalized principle can be described
by the “(1−p)/p law”[13]. In fact this ratio describes the power law
distribution uniquely and provides a metric for the concentration
of contributions. The CVE report concentration metric X/Y (read
as “Y% of reporters contributed X% of reports”) for the projects in
this study is as follows: Mozilla: 78/22, Apache: 59/41, PHP: 70/30,
Linux: 72/28. We see that reports for Mozilla are more concentrated
in a “core” group of reporters in comparison to the other projects.
On the other side of the spectrum, reports for Apache are more
balanced. We discuss how this metric can be used to describe the
balance between dedicated reporters and the “many eyes” of Linus’
law in Section 5.
(CVEs and reporters over time.) Figure 2 shows several temporal
characteristics of the reporting process. The second plot of Figure 2
shows that the number of distinct reporters per year generally
follows an increasing trend, as do the number of vulnerabilities
reported (first plot). Note that to assign CVEs to years, we used the
‘YEAR’ portion of the CVE identifier (the YYYY of a CVE identifier
that has the format CVE-YYYY-NNNNN). According to MITRE, “the
YYYY portion is the year that the CVE ID was assigned OR the
year the vulnerability was made public (if before the CVE ID was
assigned)”19. Since we collected our data in early 2021, the analysis
for some 2020 entries had not been published yet in the NVD,
explaining the lower number of entries for that year compared to
previous ones. The average number of reports per reporter (third
plot) shows no noteworthy trend and varies between 1 and 4 reports
for all projects, with the Linux kernel having a slightly higher
average number during the last years. Note that a CVE can have
multiple reporters, thus this number is not bounded by 1. The
fourth plot shows an interesting phenomenon: in particular for the
Linux kernel and Mozilla there is a constant influx of new reporters
ranging from 40 to 90 per year (roughly half of all reporters for
each calendar year are first-time reporters). Thus, new reporters
are significant contributors to the process.
(Period of engagement.) Since, as we showed, the distribution of
reports per reporter is heavy-tailed (most reporters have reported
only a few bugs and few reporters have reported most bugs), for this

19https://cve.mitre.org/about/faqs.html#year_portion_of_cve_id

https://cve.mitre.org/about/faqs.html#year_portion_of_cve_id

Who are Vulnerability Reporters? A Large-scale Empirical Study on FLOSS ESEM ’21, October 11–15, 2021, Bari, Italy

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Years

0
100
200
300

CV
Es

mozilla
linux
apache
php

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Years

0

50

100

150

Re
po

rte
rs

mozilla
linux
apache
php

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Years

1

2

3

4

Av
g.

 re
po

rts
/re

po
rte

r

mozilla
linux
apache
php

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Years

0
25
50
75

Ne
w

re
po

rte
rs mozilla

linux
apache
php

Figure 2: From top to bottom (all per year): # of CVEs, # of
reporters, average reports per reporter, # of new reporters.
Note that the drop for 2020 observed in all plots is due to
the time of data collection being in early 2021 (information
for some 2020 vulnerabilities may not be published yet)

part of our investigation we focus on this heavy tail by looking into
the top 10 reporters for each project. Figure 3 includes 3 box plots.
Observing the first plot, we can say that there is a considerable
variation between projects regarding how long their top reporters
remained engaged. The median for Mozilla is more than 8 years,
whereas for Linux only 3. Note that a reporter’s last report stands
for their last report until now; we can not know if they make new
reports in the future. Therefore, the first plot gives a lower bound
on the duration of engagement. In this paper, we do not investigate
phenomena regarding potential periodic reporter behavior, but our
dataset can be used to study such hypotheses in the future. The
second plot shows that, until now, only for Mozilla can we make
the argument that there is a learning curve of about 3 years before
reporter productivity peaks. Also considering the observations
from the first plot, reporters in the other projects seem to generally
not remain engaged long enough for effects of a learning curve
to manifest themselves. The third plot of Figure 3 shows the time
between the year of the peak performance for each of the top
reporters and their last report to date. For Mozilla this time is 4

M L A P

2

4

6

8

10

12

14

Ye
ar

s

Last-first

M L A P
0

2

4

6

8

10
Peak-first

M L A P
0

2

4

6

8

10
Last-peak

Figure 3: For the top 10 reporters for each project: time in
years between (a) their first and more recent report until
now (last), (b) their first report and their peak year, and
(c) their peak year and their last report until now ([5,95]
whiskers). Letters in the x axis are the initials of the corre-
sponding projects.

years (median), while for the other projects, it is one year. Overall,
we see that Mozilla has a more stable base of long-term regular
contributors of vulnerabilities, while for the other projects, even
their top contributors stay engaged only for 2-5 years.

(Reporter specialization.) Only 83 reporters (out of a total of more
than 2 000) have reported a vulnerability for two or more of the
projects. This number goes down to 14 entities who reported vul-
nerabilities for three or more of the projects, and only one entity
(iDefense, which was a bug-bounty program, so probably includes
multiple entities) reported a vulnerability for all four of the projects
under investigation. Thus, reporters to multiple of these four FLOSS
projects are rare, i.e. reporters are generally specialized w.r.t. the
project they are testing.

To investigate reporter specialization w.r.t. CVE types, we extract
the Common Weakness Enumeration (CWE) number of each CVE
from the information available at the NVD. Since some CWE types
are closely related or have changed over time, and since we are
interested in a more high-level classification of vulnerability types,
we follow the approach of [6] to map each CWE to one of the 6
following high-level categories:
1. Memory and Resource Management (e.g. CWE-119: “Improper
Restriction of Operations within the Bounds of a Memory Buffer”)
2. Input Validation and Sanitization (e.g. CWE-20: “Improper Input
Validation”)
3. Code Development Quality (e.g. CWE-369: “Divide By Zero”)
4. Security Measures (e.g. category CWE-310: “Cryptographic Is-
sues”)
5. Concurrency (e.g. CWE-362: “Race Condition”)
6. Other

We provide an overview of the number of different CWE types
and categories found by reporters with more than 20 reports, in the
box plots in Figure 4. Half of all reporters have reported issues of 10
or more different CWE types, or alternatively 4 or more categories.
Half of all reporters have a specific CWE type that accounts for

ESEM ’21, October 11–15, 2021, Bari, Italy Nikolaos Alexopoulos, Andrew Meneely, Dorian Arnouts, and Max Mühlhäuser

more than 30% of their reports, or alternatively they have a specific
higher-level category that accounts for 45% or more of their reports.

1
0

5

10

15

20

25

30

Nu
m

CWEs per reporter

1

1

2

3

4

5

6
cats per reporter

1

0.2

0.4

0.6

0.8

1.0
CWEs most

1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
cats most

Figure 4: Number of different CWEs and categories (cats) for
each reporter. Third column: for each reporter, what portion
of their reports falls into the CWE/category with the most
reports (dominant).

To investigate whether the distribution of reporters per category
varies between reporters, we compared the distribution of cate-
gories of each individual reporter with at least 20 reports, with the
overall distribution of categories for the project that the reports
concern. We only looked into reporters with at least 20 reports in or-
der to be able to make statistical arguments about the distributions,
and we looked for reports in each project individually to account
for different categories being more common in different projects
(e.g. the number of concurrency bugs is negligible in projects other
than the Linux kernel). We employed a Chi-squared test to assess
whether the distribution of categories corresponding to reports
from a given reporter deviates significantly (p<0.05) from the ex-
pected (taken for the project as a whole). Then, for those reporters
whose distribution deviates, we checked if more than half of their
reports fall into the same category, signaling a specific focus. The
results are summarized in Table 3.

Project reporters > 20 # deviate # focused
Mozilla suite 49 33 21
Apache httpd 0 0 0

PHP 4 1 1
Linux (kernel) 18 16 13

Table 3: Deviations from expected categories. From left to
right: reporters with more than 20 reports; out of them, re-
porters with a deviation w.r.t. categories; out of the latter,
reporters with a specific focus category.

Due to the low number of observations for Apache and PHP, we
focus on Mozilla and Linux. For Mozilla, out of the 21 reporters
who exhibited a particular focus, 13 focused on memory-related
issues (category 1), 3 focused on issues related to security measures
(category 4), while 5 focused on “Other” issues. For Linux, out of the
13 reporters with a significant focus, 3 focused on memory-related

issues while 10 focused on issues related to security measures. Over-
all, results indicate that a significant portion of the most productive
reporters are specialized in a specific category of vulnerabilities
and that there are two main categories of specialization: memory
and security measures. We can conjecture that reporters specialized
in memory issues are the ones who develop and operate several
fuzzing mechanisms that have become popular during the last
years, while reporters specialized in security measures are the ones
looking specifically for issues that do not cause crashes (and there-
fore cannot be detected by usual fuzzing tools); rather these issues
have to do with permissions, cryptographic implementations, data
leakage, etc.

4.2 Motivations
(Bug bounty programs.) Table 4 shows the number of CVEs asso-
ciated with a bounty for each project. Because we want to gain
insights into the incentives of reporters, we provide a low estimate,
which corresponds to the confirmed number of CVEs for which a
bounty was awarded, and a high estimate, which corresponds to
the number of CVEs reported by a reporter who was awarded a
bounty for at least one of their reports.

Project CVEs bounties low-high % low-high
Mozilla suite 2 195 589–1 206 27–55
Apache httpd 249 15-16 6-6

PHP 638 142-208 22-33
Linux (kernel) 2 566 4-50 0-2

Table 4: Reports with bounties per project. Includes a low
estimate of confirmed bounties given and a high estimate
of reports by a reporter who has received a bounty at least
once.

We can observe that the effects of bug bounties vary greatly
between the projects, with Mozilla, being one of the pioneers of
bug bounties in the FLOSS community, benefiting greatly from the
program. However, in each of these projects, bounties were not
given to more than half of the reporters. Furthermore, the Linux
kernel does not depend on bounties for vulnerability discoveries at
all and still maintains a consistent influx of new reports and new
reporters. Thus, while bug bounty programs are helpful, reporters
have additional motivations beyond financial gain.
(Affiliations.) We linked reporters to affiliations based on (a) in-
formation collected from the sources of Section 3.2, (b) additional
information from reporters’ online professional profiles – when
applicable (as described in Section 3.3). A vulnerability is internal iff
(a) the reporter matches the organization (e.g. “Mozilla” or “Mozilla
Corporation”, etc. for the Mozilla suite), or (b) at least one of its re-
porters has an affiliation matching the organization (when temporal
data for affiliations is available, e.g. via information from an online
profile, then an additional constraint for the time of employment
is applied). Looking at Figure 5, we observe differences between
the projects. A significant portion of Mozilla CVEs originated from
within the organization (33%), while this portion is much smaller
for the other projects (<10%). The most significant external con-
tributors to Mozilla reports are Tencent and Google. A number of

Who are Vulnerability Reporters? A Large-scale Empirical Study on FLOSS ESEM ’21, October 11–15, 2021, Bari, Italy

mozilla linux apache php
project

0

20

40

60

80

100 Internal
Other
Other $
Unknown $
Unknown

Figure 5: Affiliations associated to CVEs. Internal is for re-
porters affiliated to the organization behind the project,
Other is for reporters affiliated to other organizations, and
Unknown is for CVEs which could not be associated to an
affiliation. We mark with $ the subsets of the two latter cat-
egories that were awarded bug bounties.

companies/organizations contribute significantly to the security
of the Linux kernel, with the most notable being Google, Qihoo
360, and Red Hat. Also for the kernel, a comparably large num-
ber of CVEs could not be associated with an affiliation, potentially
pointing to a higher engagement of hackers working on a volunteer
basis.
(Commits and bug reports.) We found at least one commit in any
of the projects for 730 out of a total of 2060 human reporters in
our dataset (35%). 559 reporters have made 10 or more commits
(27%), while 382 (19%) have made 100 or more commits. While
reporters are not regular committers in their majority, a significant
percentage is actively contributing to the codebase.

Project Reporters Bug Reporters (%) Median
All 2060 810 (39%) 5

Mozilla suite 917 394 (43%) 8
Apache httpd 160 34 (21%) 4

PHP 277 65 (23%) 3
Linux (kernel) 790 151 (19%) 2

Table 5: Percentage of vulnerability reporters with non-cve
bug reports and median of such bugs per reporter.

One hypothesis we could make is that most vulnerability re-
porters find and report other kinds of bugs (non-CVE) as by-products
of the process, and that these bugs are somehow different than other
non-security bugs. If this hypothesis is true, then related metrics
could be used to measure vulnerability-hunting effort. In the fol-
lowing, we investigate this hypothesis.

A significant portion (39%) of vulnerability reporters created
at least one non-CVE bug in one of the projects’ bug tracking
platforms. Between the projects, percentages vary between 19%
and 43% (Table 5). For the Mozilla Suite, this value is clearly higher
with 43% (19-23% for the other projects). Mozilla reporters also
report more non-CVE bugs than others (median for Mozilla is 8
compared to 2-4 for the other projects).

Project Severe Resolved Keywords

reps rest reps rest reps rest
Mozilla suite 20% 13% 40% 34% 23% 11%
Apache httpd 12% 20% 47% 32% 15% 10%

PHP - - 46% 11% 22% 12%
Linux (kernel) 11% 16% 31% 27% 21% 15%

Table 6: Differences between bugs by vulnerability reporters
(reps) and others (rest) as a percentage of the total for
each class. All statistically significant (p < 0.05 for the Chi-
squared test). Severe are bugs with critical, major or high
severity (except for PHP for which no severity field exists).
Resolved are bugs marked fixed in bug reports (except for
PHP for which no such field exists, and therefore we consid-
ered bugs with associated fixing commits).

To analyze if bugs opened by vulnerability reporters differ from
bugs by others, we used the fields severity and resolution of bug
reports (hypothesizing that vulnerability reporters report more
severe bugs that are also more likely to be resolved). Additionally
we searched for the keywords memory, crash and security in bug
descriptions, assuming that these words occur more often for more
serious bugs (hypothesizing that vulnerability reporters mostly
create such bug reports). The results are summarized in Table 6. We
observe a higher percentage of severe bugs only for Mozilla, with
the tendency reversed for Apache and Linux. Regarding resolution,
for each of the projects, a higher percentage of bugs created by
reporters are fixed. For keywords, reporters of all projects have
created a (slightly) higher percentage of bugs mentioning memory,
crash or security. Overall, although we identified statistically signif-
icant differences between bugs created by vulnerability reporters
compared to bugs created by others, the magnitude of the differ-
ences is small. Additionally, as stated earlier, only a minority of
vulnerability reporters also reported other bugs, with the percent-
age varying significantly between projects. As a conclusion based
on the two previous statements, we cannot support the hypothesis
that by-products of vulnerability hunting in a project’s bug track-
ing platform can be identified and utilized, in order to assess the
expended vulnerability hunting effort.

5 DISCUSSION AND IMPLICATIONS
In this section, we discuss some implications of our results.
- Observations as a benchmark and recommendations for
new projects:We saw that the FLOSS projects in our study depend
both on a dedicated set of “core” reporters with many reports, as
well as on one-off contributions from a large set of reporters (“many
eyeballs”). Therefore, projects should make sure that they attract
both types of reporters, e.g. via having dedicated security resources
and planning in addition to engaging with volunteer hackers. Fur-
thermore, FLOSS projects depend on attracting a steady influx of
new reporters into their communities, therefore projects should
find ways to keep attracting new reporters. Depending on the type
of the project, the motivations of reporters may vary, and as a result
the best ways to attract them may also vary. If the project is used
as a core part of the operation of other organizations (e.g. the Linux
kernel), then these organizations may contribute to creating the

ESEM ’21, October 11–15, 2021, Bari, Italy Nikolaos Alexopoulos, Andrew Meneely, Dorian Arnouts, and Max Mühlhäuser

dedicated “core” of reporters. Otherwise, more investment of own
resources or bug bounty programs may be needed (e.g. as in the
case of Mozilla). Also, productive reporters seem to be specialized
w.r.t. the types of vulnerabilities they are looking for (especially re-
garding memory-related issues and security issues). Thus, projects
should look to attract a diverse set of vulnerability reporters.
- Community engagement metrics as indicators of quality:
An ideal numerical “vulnerability-hunting effort” metric would
provide the community with a powerful tool in order to measure
the security of software projects. The complexities and per project
peculiarities that we showcased in this paper suggest that a singular
such metric may be unattainable. However, some of the metrics we
investigated in this paper – in combination with qualitative charac-
teristics discussed in the previous paragraph – may provide useful
indications regarding the quality and intensity of the vulnerability-
hunting process for a project. Specifically, the (1 − p)/p ratio of
the distribution of the number of reports per reporter (generalized
Pareto principle) can be used as a metric for the concentration
of contributions in a project. We saw that all projects in our in-
vestigation showed some imbalance w.r.t how many reports are
contributed by each reporter. There are many factors (familiarity
with a project, use of automated tools, discovery of vulnerability
patterns) that could support a preferential attachment mechanism
that creates a heavy-tailed distribution of reports per reporter. A
very high concentration of reports (e.g. 90/10) would indicate low
participation of the “many eyeballs” of a community to the vul-
nerability reporting process. A very low concentration (e.g. 50/50)
would indicate a lack of dedicated resource allocation (or lacking
effectiveness of those resources).

Our results suggest that metrics such as the popularity of a
project, or the number of developers, do not directly relate to the
number of vulnerability reporters, since most reporters were not
otherwise involved in those projects. Anecdotal evidence, such as
the Linux foundation’s executive director’s Jim Zemlin commentary
on the Heartbleed vulnerability of OpenSSL: “In these cases the
eyeballs weren’t really looking,” seem to support this suggestion.
Merely being a popular project does not automatically translate to
having an active and adequate community of vulnerability reporters.
This would also mean that the use of the popularity of a project
(e.g. install base) as a metric for vulnerability-hunting effort (as
in some effort-based vulnerability discovery models) may lead to
uninformative or even misleading results. A detailed analysis, as
the one presented in this paper requires human involvement for
the interpretation of its result, yet we believe it provides more
actionable and valuable indications regarding the health of the
vulnerability-hunting community of a project. Thus, we believe
that the methodology presented in this paper can also act as a
“general profile” of the health of a project’s vulnerability reporting
ecosystem.

6 THREATS TO VALIDITY
Below we document some possible sources of bias in our results.
- Best-effort: We collected our data from multiple sources and un-
derwent a rigorous cleaning process. Understandably, this process
was best-effort and we welcome corrections by the community on
our publicly available dataset.

- Inherent noise and incomplete data: Our information sources
(NVD, security advisories, bug reports, etc.) are manually curated
and therefore subject to errors and omissions. Furthermore, we
focused our investigation on vulnerabilities that received a CVE
identifier. Although the CVE database is supposed to “fully cover”
the projects in our study, it is known that a significant amount
of vulnerabilities do not get a CVE. Although we do not expect
these vulnerabilities to differ significantly (w.r.t. the characteristics
we studied) to the ones in our study, future efforts can be driven
towards expanding our dataset to include more vulnerabilities.
- Generalization: We investigated four popular FLOSS projects.
In particular, these are among the largest FLOSS projects with
longevity, so these results may not apply to smaller, newer FLOSS
projects. We saw various differences in the reporter characteristics
for each project, and therefore additional studies are required to
have a more general understanding. However, our methodology
is largely automated and should be applicable to any other FLOSS
projects that keep accurate records of their vulnerability reporters,
which can significantly reduce the overhead of future studies.
- Reporters vs discoverers: For the discussion of the implication
of our results, we assumed that the people/organizations who get
credited with reporting a vulnerability are the ones that discov-
ered it. We believe this to be a valid assumption macroscopically,
although we note that it may not be universally true.

7 SUMMARY AND CONCLUSION
We performed the first (to the best of our knowledge) large-scale
study on FLOSS vulnerability reporters, going beyond bug-bounty
programs. We investigated several aspects regarding the trends,
backgrounds, motivations, and behaviors of vulnerability reporters.
We identified qualitative characteristics that can act as benchmarks
for healthy vulnerability-finding ecosystems. We also identified
a quantitative metric that can provide indications regarding the
health of the vulnerability-hunting ecosystem of a project, although
further study with even bigger datasets is required. As an indepen-
dent contribution, we demonstrated that characteristics of vulner-
ability reporters can be studied through information mined from
several publicly available online sources. Our approach is mostly
automated and our data and scripts are open to the public, so future
researchers or FLOSS project coordinators can further build upon
this study.

In conclusion, based on our results, we believe that individual
metrics for vulnerability-hunting effort without context will fail to
capture the unique characteristics of the process. On the other hand,
comprehensive case studies, shedding light on multiple potentially
co-dependent aspects of the process, can provide useful insights.
The methodology we present in this paper provides a blueprint for
such approaches.

ACKNOWLEDGMENTS
This work has been co-funded by the German Federal Ministry of
Education and Research and the Hessen State Ministry for Higher
Education, Research and the Arts within their joint support of the
National Research Center for Applied Cybersecurity ATHENE.

Who are Vulnerability Reporters? A Large-scale Empirical Study on FLOSS ESEM ’21, October 11–15, 2021, Bari, Italy

REFERENCES
[1] Nikolaos Alexopoulos, Sheikh Mahbub Habib, Steffen Schulz, and Max

Mühlhäuser. 2020. The Tip of the Iceberg: On the Merits of Finding Secu-
rity Bugs. ACM Trans. Priv. Secur. 24, 1, Article 3 (Sept. 2020), 33 pages.
https://doi.org/10.1145/3406112

[2] Omar H. Alhazmi and Yashwant K. Malaiya. 2005. Modeling the Vulnerability
Discovery Process. In 16th International Symposium on Software Reliability En-
gineering (ISSRE 2005), 8-11 November 2005, Chicago, IL, USA. IEEE Computer
Society, 129–138. https://doi.org/10.1109/ISSRE.2005.30

[3] Omar H Alhazmi and Yashwant K Malaiya. 2005. Quantitative vulnerability
assessment of systems software. In Reliability and Maintainability Symposium,
2005. Proceedings. Annual. IEEE, 615–620.

[4] Omar H. Alhazmi and Yashwant K. Malaiya. 2006. Measuring and Enhancing
Prediction Capabilities of Vulnerability Discovery Models for Apache and IIS
HTTP Servers. In 17th International Symposium on Software Reliability Engi-
neering (ISSRE 2006), 7-10 November 2006, Raleigh, North Carolina, USA. IEEE
Computer Society, 343–352. https://doi.org/10.1109/ISSRE.2006.26

[5] Christian Bird, Alex Gourley, Premkumar T. Devanbu, Michael Gertz, and Anand
Swaminathan. 2006. Mining email social networks. In Proceedings of the 2006
International Workshop on Mining Software Repositories, MSR 2006, Shanghai,
China, May 22-23, 2006, Stephan Diehl, Harald C. Gall, and Ahmed E. Hassan
(Eds.). ACM, 137–143. https://doi.org/10.1145/1137983.1138016

[6] Manuel Brack. 2020. A large-scale statisticalAnalysis of Vulnerability Lifetimes
in Open-Source Software. Bachelor thesis. Technical University of Darmstadt.

[7] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009. Power-law
distributions in empirical data. SIAM review 51, 4 (2009), 661–703.

[8] CVE Details. 2020. Browse vulnerabilities by Date. Retrieved 2020-20-05 from
https://www.cvedetails.com/browse-by-date.php

[9] Ming Fang and Munawar Hafiz. 2014. Discovering buffer overflow vulnerabilities
in the wild: an empirical study. In 2014 ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM ’14, Torino, Italy,
September 18-19, 2014, Maurizio Morisio, Tore Dybå, and Marco Torchiano (Eds.).
ACM, 23:1–23:10. https://doi.org/10.1145/2652524.2652533

[10] Matthew Finifter, Devdatta Akhawe, and David A. Wagner. 2013. An Empirical
Study of Vulnerability Rewards Programs. In Proceedings of the 22th USENIX
Security Symposium, Washington, DC, USA, August 14-16, 2013. 273–288.

[11] Stefan Frei. 2009. Security econometrics: The dynamics of (in) security. Ph.D.
Dissertation. ETH Zurich.

[12] Munawar Hafiz and Ming Fang. 2016. Game of detections: how are security
vulnerabilities discovered in the wild? Empirical Software Engineering 21, 5
(2016), 1920–1959.

[13] Michael Hardy. 2010. Pareto’s law. The Mathematical Intelligencer 32, 3 (2010),
38–43.

[14] Hideaki Hata, Mingyu Guo, and Muhammad Ali Babar. 2017. Understanding
the Heterogeneity of Contributors in Bug Bounty Programs. In 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement,
ESEM 2017, Toronto, ON, Canada, November 9-10, 2017. 223–228. https://doi.org/
10.1109/ESEM.2017.34

[15] HyunChul Joh, Jinyoo Kim, and Yashwant K. Malaiya. 2008. Vulnerability Discov-
eryModeling UsingWeibull Distribution. In 19th International Symposium on Soft-
ware Reliability Engineering (ISSRE 2008), 11-14 November 2008, Seattle/Redmond,
WA, USA. IEEE Computer Society, 299–300. https://doi.org/10.1109/ISSRE.2008.32

[16] Jinyoo Kim, Yashwant K Malaiya, and Indrakshi Ray. 2007. Vulnerability discov-
ery in multi-version software systems. In High Assurance Systems Engineering
Symposium, 2007. HASE’07. 10th IEEE. IEEE, 141–148.

[17] Frank Li and Vern Paxson. 2017. A Large-Scale Empirical Study of Security
Patches. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017. 2201–2215. https://doi.org/10.1145/3133956.3134072

[18] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. 2008. Power laws
in software. ACM Trans. Softw. Eng. Methodol. 18, 1 (2008), 2:1–2:26. https:
//doi.org/10.1145/1391984.1391986

[19] Thomas Maillart, Mingyi Zhao, Jens Grossklags, and John Chuang. 2017. Given
enough eyeballs, all bugs are shallow? Revisiting Eric Raymond with bug bounty
programs. Journal of Cybersecurity 3, 2 (2017), 81–90.

[20] AndrewMeneely and Laurie A. Williams. 2009. Secure open source collaboration:
an empirical study of linus’ law. In Proceedings of the 2009 ACM Conference
on Computer and Communications Security, CCS 2009, Chicago, Illinois, USA,
November 9-13, 2009. 453–462. https://doi.org/10.1145/1653662.1653717

[21] Andrew Meneely and Laurie A. Williams. 2010. Strengthening the empir-
ical analysis of the relationship between Linus’ Law and software security.
In Proceedings of the International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM 2010, 16-17 September 2010, Bolzano/Bozen, Italy.
https://doi.org/10.1145/1852786.1852798

[22] Nuthan Munaiah and Andrew Meneely. 2016. Vulnerability Severity Scoring and
Bounties: Why the Disconnect?. In Proceedings of the 2nd International Workshop
on Software Analytics (Seattle,WA, USA) (SWAN 2016). Association for Computing

Machinery, New York, NY, USA, 8–14. https://doi.org/10.1145/2989238.2989239
[23] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Dumi-

tras. 2015. The Attack of the Clones: A Study of the Impact of Shared Code on
Vulnerability Patching. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015. 692–708. https://doi.org/10.1109/SP.2015.48

[24] NIST NVD. 2020. CWE Over Time. Retrieved 2020-20-05 from https://nvd.nist.
gov/general/visualizations/vulnerability-visualizations/cwe-over-time

[25] Eric Raymond. 1999. The cathedral and the bazaar. Knowledge, Technology &
Policy 12, 3 (1999), 23–49.

[26] Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X. Liu. 2012. A
large scale exploratory analysis of software vulnerability life cycles. In 34th
International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich,
Switzerland. 771–781. https://doi.org/10.1109/ICSE.2012.6227141

[27] Lin Tan, Chen Liu, Zhenmin Li, XuanhuiWang, Yuanyuan Zhou, and Chengxiang
Zhai. 2014. Bug characteristics in open source software. Empirical Software
Engineering 19, 6 (2014), 1665–1705.

[28] Daniel Votipka, Rock Stevens, Elissa M. Redmiles, Jeremy Hu, and Michelle L.
Mazurek. 2018. Hackers vs. Testers: A Comparison of Software Vulnerability
Discovery Processes. In 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA. IEEE Computer
Society, 374–391. https://doi.org/10.1109/SP.2018.00003

[29] Sung-Whan Woo, Omar H. Alhazmi, and Yashwant K. Malaiya. 2006. Assessing
Vulnerabilities in Apache and IIS HTTP Servers. In Second International Sympo-
sium on Dependable Autonomic and Secure Computing (DASC 2006), 29 September
- 1 October 2006, Indianapolis, Indiana, USA. IEEE Computer Society, 103–110.
https://doi.org/10.1109/DASC.2006.21

[30] Mingyi Zhao, Jens Grossklags, and Peng Liu. 2015. An Empirical Study of Web
Vulnerability Discovery Ecosystems. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS 2015, Denver, CO,
USA, October 12-16, 2015. 1105–1117. https://doi.org/10.1145/2810103.2813704

https://doi.org/10.1145/3406112
https://doi.org/10.1109/ISSRE.2005.30
https://doi.org/10.1109/ISSRE.2006.26
https://doi.org/10.1145/1137983.1138016
https://www.cvedetails.com/browse-by-date.php
https://doi.org/10.1145/2652524.2652533
https://doi.org/10.1109/ESEM.2017.34
https://doi.org/10.1109/ESEM.2017.34
https://doi.org/10.1109/ISSRE.2008.32
https://doi.org/10.1145/3133956.3134072
https://doi.org/10.1145/1391984.1391986
https://doi.org/10.1145/1391984.1391986
https://doi.org/10.1145/1653662.1653717
https://doi.org/10.1145/1852786.1852798
https://doi.org/10.1145/2989238.2989239
https://doi.org/10.1109/SP.2015.48
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://doi.org/10.1109/ICSE.2012.6227141
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/DASC.2006.21
https://doi.org/10.1145/2810103.2813704

ESEM ’21, October 11–15, 2021, Bari, Italy Nikolaos Alexopoulos, Andrew Meneely, Dorian Arnouts, and Max Mühlhäuser

A SUMMARY OF DATA SOURCES

Bug Reports
– bug number (K)
– alias
– summary
– reporters
– comments

NVD
– CVE id (K)
– description
– references

Code repos
– commit hash (K)
– commit msg
– author
– committer

3rd party sources
– CVE id (K)
– reporters
– details

alias, comments

ref.

comments

CVE id, references

commit msg

ref.

Figure 6: Summary of collected data points and their con-
nections. K stands for the primary (unique) key of the col-
lection.

B ADDITIONAL FIGURES

100 101 102

Vulnerabilities - All

10 3

10 2

10 1

100

cc
df

data - All
power-law fit
truncated power-law fit
lognormal fit

100 101 102

Vulnerabilities - Mozilla

10 3

10 2

10 1

100

cc
df

data - Mozilla
power-law fit
truncated power-law fit
lognormal fit

100 101 102

Vulnerabilities - Linux

10 3

10 2

10 1

100

cc
df

data - Linux
power-law fit
truncated power-law fit
lognormal fit

100 101

Vulnerabilities - PHP

10 2

10 1

100

cc
df

data - PHP
power-law fit
truncated power-law fit
lognormal fit

Figure 7: Heavy-tailed distribution fits (complementary cu-
mulative distribution function).

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Projects in this study
	3.2 Data sources
	3.3 Data cleaning and pre-processing

	4 Results
	4.1 Distributions and temporal characteristics
	4.2 Motivations

	5 Discussion and Implications
	6 Threats to validity
	7 Summary and conclusion
	Acknowledgments
	References
	A Summary of data sources
	B Additional figures

